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groups at the ambient side of the monolayer. A pictorial structure 
of an isolated adsorbate molecule that incorporates features 
consistent with our data is given in Figure 3. Recent measure­
ments on a monolayer consisting of a diacid with a (CD2)6 segment 
at the center of the chain demonstrate that the fold must consist 
of at least six methylene groups.28 These experiments, additional 
ones involving more complex folded molecular structures, and 
further characterization of the ordering in such structures will 
be reported in detail in future publications. 
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From his considerable experience with the concepts of chemical 
hardness and softness, in 1987 Ralph Pearson concluded that 
"there seems to be a rule of nature that molecules arrange 
themselves so as to be as hard as possible."' Subsequent studies 
of particular problems support this principle and imply that its 
validity may require conditions of constant temperature and 
chemical potential.2 Following is a formal proof of the principle, 
as so modified. 

Absolute hardness i) and absolute softness S, of the equilibrium 
state of an electronic system at temperature T, are defined by 

2v and 5= 
2V \ 8* /»w.r 

(D 

where n is the electronic chemical potential (constant through the 
system),3 A' is the number of electrons, and v(r) is the potential 
acting on an electron at r due to the nuclear attraction plus such 
other external forces as may be present. These definitions are 
the finite-temperature extensions of the ground-state definitions 
of these quantities.4"6 The chemical potential is the Lagrange 
multiplier for the normalization constraint in the finite-temperature 
density-functional theory.6,7 It also is the negative of the absolute 
electronegativity.3 In terms of the Helmholtz free energy, n = 
{dA/dN)^,yT. Note that v(r) constant implies total volume 
constant. 

Imagine a grand canonical ensemble consisting of a large 
number of perfect replicas of a particular electronic system of 
interest, in equilibrium with a bath at temperature T and chemical 
potential fi, with the bath also controlling v(t). The members of 
the ensemble may exchange energy and electrons with each other. 
Equilibrium averages being denoted with brackets, N will fluctuate 
about (N). The equilibrium softness is given by5 
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S is the grand partition function. The probabilities P%j define 
the equilibrium distribution. They are functions of the parameters 
that characterize the ensemble: /3, fi, and v(r); dependence on 
v(r) comes through the fact that the Em depend on v(r). 

Now consider the countless other, nonequilibrium ensembles 
of the same system of interest, at temperature T but characterized 
by probabilities PNJ different from the canonical probabilities P°NI. 
An average in any such ensemble may be denoted with overbars, 
as for example S = PZN^NA^- (N))2, Consider only those 
of these nonequilibrium ensembles that can be generated as 
equilibrium ensembles by changing the bath parameters n and 
v(r), by small amounts. For any one of these, it will be shown 
that 

S-(S) ~ 0Z(N-
N,i 

(N))2(PNj-P%j)>0 (6) 

Consequently, among all these states, the equilibrium state may 
be characterized as having minimum softness. 

Proof of eq 6 follows from the fluctuation-dissipation theorem 
of statistical mechanics.8 For simplicity employing classical 
statistical mechanics, let the equilibrium probability distribution 
function for the system of interest, with grand potential Q(T^,p^1) 
= H(rN,pN) - iiN, be/(r*V) (corresponding to P%ti) and let the 
corresponding arbitrary nearby distribution be F(rN,pN) (corre­
sponding to PNj). Then the physical perturbation AQ(r'v,p'v) 
generating F at time t = 0 must satisfy 

f( W ) = 
exp(-/?An) 

<exp(-j8AS])y 
•f(rN,PN) 

= (A)-1 A(xl V)/IW) 
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where 

CA(TN,VN) = exp(-/3Afi) and AQ = 

ifr [CzI(W)] (9) 

f(rN,pN) a"d (A) are independent of time, and C is a positive 
constant serving the purpose of a field component of the per­
turbation which couples with A; other quantities depend on time. 
Equation 8 shows that the conditions are satisfied for Exercise 
8.3, p 242, of ref 8. Accordingly, it follows that 

(A)[A(I) - (A)] = ((A(Q) - (A))(A(I) - (A))) (10) 

and 

A(O)-(A) = (A)-H(A(O)-(A))2) (H) 

Here A(t) is the average of A(t) for the nonequilibrium distribution 
F. Now take A to be the observable that is the softness, 

A =/3(/V- (N))2 

Since this (A) is positive, eq 11 implies 

5(0) - (S) > 0 

which is the inequality of eq 6. 

(12) 
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The derivation is finished if the class of neighboring states 
defined by eqs 9 and 12, that is, by 

CP(N- (N))2 = exp(-/3Afi) (14) 

can be shown to include all possible physically acceptable nearby 
nonequilibrium distributions that can evolve into the given original 
equilibrium distribution. Presumably it does, as eq 14 is a minimal 
requirement to produce (A) = (S), and such assumptions are 
standard in traditional linear response theory. Note that constant 
T and ju are required because the averaging after the perturbation 
is removed is done with the P%ti orf(rN,pN). 

Is there certainly a rule of nature that chemical systems at 
constant temperature and chemical potential evolve toward 
minimum softness or maximum hardness? A major concern with 
the proof just given should be whether statistical mechanics indeed 
applies to electrons in individual molecules in the sense employed. 
Evidence is accumulating that it does, at least to some reasonable 
accuracy,6 but one should not, at this time, imply certainty. 
Nevertheless, with some confidence one may assert, with Pearson, 
the maximum hardness principle. If one also asserts, with San­
derson,9 the electronegativity (chemical potential)3 equalization 
principle, then one has reached two basic, broadly applicable 
electronic-structure principles. 
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It is generally accepted that a variety of acid-base reactions 
can be described by the HSAB principle:1 "Hard likes hard and 
soft likes soft". It is not, however, easy to theoretically establish 
this principle. Here two proofs are offered of this principle with 
a restriction added: Among potential partners of a given elec­
tronegativity, hard likes hard and soft likes soft. 

For the ground state of an yV-electron system at 0 K, or for the 
equilibrium state at the temperature T, according to density-
functional theory2 hardness and softness are given by3'4 

2i? = (-) andS = - U ( ^ 0) 

where M and v(r) are the chemical and external potentials, re­
spectively. When two species combine to give a third, their 
chemical potentials are equalized. Chemical potential is the 
negative of electronegativity. The maximum hardness principle 
or minimum softness principle states that, at constant /u, v(r), and 
T, systems evolve toward minimum total softness.5'6 

First Proof." When acid A and base B interact to give AB, 
two things happen, which can be taken as happening in succession. 
First there is a charge transfer producing a common chemical 
potential, and then there is a reshuffling of the charge distributions. 
In the first step there is an energy gain proportional to the square 
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of the original chemical potential difference and inversely pro­
portional to the resistance to charge transfer which is the hardness 
sum. The specific old formula,3 

• MA)2 ( A M ) 2 

AE = -
(MB-

4(»?A + VB) 

SAS A°B 
sA + sB 

(2) 

need not be precisely valid; the essential point is the indicated 
dependence on softnesses. The greater SASB/(SA + SB) is, the 
more stabilizing is the charge transfer. For a given SA, the larger 
SB is, the better. 

In the next, reshuffling step, which is at constant ^ and T, the 
minimum-softness principle applies. The total softness is, at least 
roughly, SA + SB by application of eq 1 to nonoverlapping A plus 
B with a total number of electrons NA + /VB.7 The preference 
in this step is for 5A and SB to be as small as possible. So, for 
a given SA, the smaller SB is, the better. Thus there are two 
opposing tendencies, and the optimum situation will be a com­
promise. 

Suppose SA is fixed, let SB = aSA, and consider the question 
of what will be the best value of SB or a. The supremum value 
of a/(I + a), !,corresponds to maximum initial energy gain and 
maximum softness, while the infimum value, 0, has these roles 
reversed. If nothing is known about the relative importance of 
the two conditions, a most natural compromise would be to take 
the average value, viz., a/(\ + a) = '/2- This is the HSAB 
principle: a = 1. In this analysis SA and SB are softnesses either 
before or after the chemical potential equalization step; fortunately 
these quantities are known to be insensitive to the number of 
electrons.8 The final chemical bond formation may be assumed 
not to much affect the partitioning SA + 5B and not to much affect 
the components SA and SB. 

To quantify the argument: For a given A/u and SA, the problem 
is to find the most favorable SB, or the most favorable a. From 
eq 2 one would want a/(I + a) to be as large as possible, which 
favors a large a value. But to minimize S = SA + SB = SA(\ 
+ a) one would want a to be as small as possible. Simultaneous 
satisfaction of the two conditions being impossible, what one must 
assess is the relative importance of the two conditions. Let X be 
the weight of the first relative to the second. Then a is determined 
from 

d_ 
da 

(1 + a) -M 
1 + a 

= 0 (3) 

This gives a = VX - 1. For a fixed value of X (X may be hoped 
to be a more or less universal constant), the result is that, from 
among a series of B's with the same chemical potential (elec­
tronegativity), a given A will prefer one, and similarly with other 
A's. The HSAB principle follows precisely if one takes X = 4, 
for then a = 1 and SB = SA. An argument that X should be close 
to 4 is not easy to construct. 

Note that A'B + AB' — AB + A'B' is predicted to be a 
hardness-raising or softness-lowering process if SA = SB, SA> = 
Sw. The maximum hardness (minimum softness) principle is 
demanded by the HSAB principle. 

Second Proof.12 To obtain a second proof, rewrite eq 2 in the 
form 

AE = AQA + AfiB (4) 

where 

AfiA = 
(MB ~ MA)2 VA 

(VA + VB)2 

and AflB = 
(MB - MA)2 VB 

(VA + VB)'' 
(5) 

Assume that for a given ^B ~ MA and VB, AflA is minimized with 
respect to T?A- There follows 
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